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Abstract

Purpose The registration of pre-operative 3D images to intra-operative la-
paroscopic 2D images is one of the main concerns for augmented reality in
computer assisted surgery. For laparoscopic liver surgery, while several algo-
rithms have been proposed, there is neither a public dataset nor a systematic
evaluation methodology to quantitatively evaluate registration accuracy.
Method Our main contribution is to provide such a dataset with an in vivo
porcine model. It is used to evaluate a state-of-the-art registration algorithm
that is capable of simultaneous registration and soft-body collision reasoning.
Results The dataset consists of 13 deformed liver states, with corresponding
exploration videos and interventional CT acquisitions with 60 small artifi-
cial fiducials located on the surface of the liver and distributed within the
parenchyma, where a precise registration is crucial for augmented reality. This
dataset will be made public. Using this dataset, we show that collision reason-
ing improves performance of registration for strong deformation and indepen-
dent lobe motion.
Conclusion This dataset addresses the lack of public datasets in this field.
As an example of use, we present and evaluate a state-of-the-art energy based
approach and a novel extension that handles self-collisions.
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1 Introduction and Background

1.1 Augmented Reality guidance for laparoscopic liver surgery

In laparoscopic liver surgery, the organ is not manipulated directly by hand
as in open surgery, where tactile feedback facilitates localization of the sub-
structures by the surgeon. Augmented Reality (AR) can help the surgeon
by augmenting the laparoscopic images with pre-operative or intra-operative
data such as tumors or vessels, to show their positions bellow the liver surface.
For this purpose, pre-operative 3D images containing segmented substructures
have to be registered to the intra-operative laparoscopic 2D images. Because
of the insufflation that causes strong deformation of the liver [26], deformable
registration has to be used. Moreover, the pre-operative 3D image does not
contain texture information to track the model over time, as required in many
tracking systems [6].

The common approach to the AR pipeline is to divide the problem into
two steps [13,7]. First, an initial registration of the pre-operative 3D model
to the intra-operative 2D images is computed. The 2D images are extracted
from an exploration video, where the deformation is assumed constant. This
video is captured at the early stage of the surgery where the surgeon records
as much of the liver surface as possible. The registration uses geometric cues
only during this step. Once this initial registration is performed, the model can
be textured and textured-based tracking used for the rest of the intervention.

1.2 Limitations of existing registration solutions

The registration of intra-operative CT images to laparoscopic 2D images of the
exploration video is defined as the initial registration problem. In the literature,
there are three main approaches to this problem: manual alignment, automatic
rigid registration and deformable registration. Manual alignment can be done
by a specialist between the 3D pre-operative images and 2D intra-operative
images. This solution is relevant only when considering small deformations
with almost rigid organs. Moreover, a specialist in anatomy is needed during
the procedure, and the result and time needed for the procedure are strongly
operator-dependent. If the deformation is negligible, another solution is to
search for the rigid transform that minimizes the distance between surface
points of the transformed model and the target surface. Concretely, anatomical
features can be used to initialize an ICP algorithm [4]. The algorithm may fail
if the features used are hardly seen in the 2D images. For strong deformations,
deformable registration has to be used. This is technically very challenging
and involves organ-specific parameter tuning. There are two main techniques
when considering deformable registration in laparoscopic liver surgery. The
first one is simulation-based where the liver and all the applied forces are
modeled [2]. The main problems of these methods are the need to determine
constraints on the model as forces and the fact that it may be slow as it relies
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on iterative resolution. The second technique is energy-based. The registration
is considered as a minimization problem with a data-association term and a
regularization term. The first term represents how the model fits the data
and the second term represents how the model is limited in its deformation.
There are two types of energy-based method: single image registration and
multi-image registration. In single image registration, contours are often used
to create the data-association term [1,18,14]. In multi-image registration, a
surface is reconstructed from the image sequence and the problem is cast as a
registration of the surface of the 3D volumetric model to this 3D reconstructed
surface [15,21].

As for the tracking problem, different configurations have been studied in
the literature. The first one is to consider deformation but no camera motion
[18]. The second one considers only camera motion and no deformation [19].
Both are in general not realistic when considering deformable organs and in
vivo data. The last approach considers both camera motion and organ defor-
mation [7] and corresponds to the general context of surgery.

In all these works, registration accuracy is rarely measured and a precise
and reliable evaluation is never achieved. Moreover, failures in poorly condi-
tioned cases are neither shown nor discussed. When an in vivo quantitative
evaluation is performed, it is done with private data made for the purpose of
the experiment. Consequently, the result is never fully reproducible and com-
parable with the rest of the literature. This problem is caused by a lack of open
in vivo datasets for registration evaluation which would be possible to use as
a reference. Because of this, it is difficult for these methods to enter clinical
trials, through the lack of reliable proofs of their accuracy. Another issue is the
fact that these methods are limited to controlled manipulation (resection is
forbidden) and there is no reasoning about external and self-collisions, whereas
collision can add valuable constraints and can prevent some non-plausible reg-
istration solutions.

1.3 Previous attempts to measure registration accuracy

Measuring registration accuracy is difficult because in practice the ground-
truth deformation of real tissues is extremely hard to obtain. In the literature,
two quantitative values are often discussed when considering evaluation: Tar-
get Registration Error (TRE) and Fiducial Registration Error (FRE). FRE is
the error distance between the deformed position of markers that have been
used to constrain the registration and their ground-truth position. This can
be seen as the residual error of the registration. TRE is the error for points of
the model that have not been used to constrain the registration. In ICP-based
registration, where fiducials are not used, we can consider that the surface-to-
surface error represents the FRE. Nevertheless, when considering deformable
registration, the surface-to-surface error does not provide a good metric to
evaluate the results. Indeed, as the model can be deformed to fit any surface if
flexible enough, there is no warranty concerning the realism of this deforma-
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tion. Moreover, the absence of dependency between FRE and TRE has been
shown [11,12]. Therefore when considering registration evaluation, TRE has
to be preferred in all cases.

In order to evaluate registration algorithms, different approaches have been
proposed. The easiest way to obtain quantitative results is to perform the eval-
uation on simulated in silico data [21,18,14]. With such an approach TRE can
be computed by adding virtual markers in the data, and surface-to-surface
error is also easy to obtain. Nevertheless, in this case, a physical characteri-
zation and simulation of the organ has to be done, which requires simplified
modeling and has no guarantee for the realism of the simulation. Other ap-
proaches use physical silicon models (phantoms) [25,5,15,16] where only the
physical characteristics of the organ have to be determined. Nevertheless, re-
alistic phantoms of the liver are expensive to produce, and it is difficult to
replicate in vivo conditions.

When it comes to in vivo evaluation, qualitative evaluations are often pre-
ferred because of the difficulty to obtain ground-truth for this configuration.
Attempts have been made by [24] to obtain quantitative error evaluation for
in vivo data by evaluating the reprojection error of detected features located
on the liver surface. But in contrast to TRE, the error obtained is highly de-
pendent on the quality of the marker association in the algorithm. Moreover,
only the error on the surface is estimated.

In summary, while in silico and phantom datasets for TRE evaluation exist
[23], there is no in vivo liver data for TRE evaluation to date.

1.4 Contributions

Our first contribution is an in vivo dataset (Fig. 1) and evaluation methodol-
ogy for TRE evaluation using internal and external artificial landmarks (metal
spheres and clips). The dataset includes 13 interventional CT images with con-
trast injection of a pig liver in different deformed states. For each state, there
is one exploration video, and a 3D surface reconstruction computed with a
state-of-the-art dense SfM method (photoscan). During CT images acquisi-
tion and video recording, the breathing was stopped (apnea). Interventional
reconstructions were aligned to the corresponding CT image in order to obtain
the position of the markers when using the surface reconstruction as target.
Clips and spheres were associated using a novel interactive graph-based match-
ing algorithm. The associations allow evaluating TRE at each clip or sphere
in all deformation states. The dataset also includes a carefully segmented 3D
liver model, with individual lobes segmented. Such a geometry in a liver model
has never been achieved before (lobes are always considered fused into one vir-
tual lobe in the model). The problem with fused lobes is that it fundamentally
prevents individual lobe motion being recovered. This is the first systematic
database to measure quantitative external and internal registration accuracy
(TRE) for laparoscopic liver registration. This will be made public and help
drive AR research to have better evaluation standardization and transparent,
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Fig. 1 Composition of the proposed dataset.

consistent evaluation. All registration algorithms can be processed and ranked
with this dataset based on this error metric. This dataset is used in this paper
to evaluate a state-of-the-art initial registration algorithm but can also be used
in the future for evaluating registration updating algorithms and evaluating in-
terventional 3D reconstruction accuracy. This is an important and open topic
and there exists no public dataset for measuring error in vivo. Many algorithm
need training data to extract the parameters they will use. If only few data
are needed, one could only use one randomly selected configuration for this
and process the error with the entire dataset (we chose this method and used
the 8th configuration for our tests). If not, data should be split in training and
testing data, and when comparing two algorithms, the same subsets have to
be used.

Our second contribution is an adaptation of a state-of-the-art initial regis-
tration algorithm to include self-collision constraints. Self-collision constraints
are necessary to handle the deformation of non-convex structures, in partic-
ular, they are necessary for handling the lobes of the porcine liver. They are
also necessary when considering the collision between different organs but this
has not yet been attempted in the literature.

2 Evaluation methodology

2.1 Description of the procedure

The method is presented in Fig. 2. The new in vivo evaluation dataset pre-
sented was obtained on a 50Kg male Large White Pig (Sus scrofa domesti-
cus). By laparotomy, the liver surface was exposed. Fifteen metal clips of 1cm
length were distributed evenly on the ventral liver surface. Additionally, 45
metal spheres of 2mm diameter were introduced into the liver parenchyma.
This was achieved by accessing the dorsal aspect of each liver lobe and the
spheres were placed by use of an introduction catheter, in order to avoid sur-
face lesions indicative of their location (1). The laparotomy was then closed
and we proceeded to a laparoscopic approach. After trocar placement, the
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Fig. 2 Evaluation procedure and provided dataset.

abdominal cavity was insufflated with a standard CO2 pressure (12 mmHg).
By moving the four porcine liver lobes into different positions, 13 different la-
paroscopic configurations were obtained and laparoscopic surface exploration
with a 3D camera system (3) was recorded on video for each of them. The
datasets were complemented by a computed tomography (CT) scan for each
configuration to obtain the position of the markers we use to mesure the reg-
istration error (2). Two registration targets were considered. The first was to
use a segmentation of the surface of the liver using the CT images. This was
performed in order to test the registration algorithm reliability in the optimal
setting, obtaining a reconstruction of the complete liver surface. In practice,
only a portion of the liver surface is reconstructed. The second approach was to
use as target a surface reconstruction, built from the video acquired by laparo-
scopic exploration. It was done using photoscan-pro1, a state-of-the-art surface
reconstruction software (4). When the laparoscopic phase was completed, the
laparotomy was re-opened. We additionally separated the four liver lobes by
placing interlobar contrast-agent soaked gauze swabs to facilitate discrimina-
tion of lobar margins on the subsequent CT scan. This CT scan served to
clearly identify the lobe boundaries and was used to build our reference model
with segmented lobes (5). At the end of the procedure, the pig was humanely
sacrificed according to the protocol.

2.2 Position and correspondences of the markers between views

From the CT images obtained, we segmented the metal markers and classi-
fied them as sphere or clip depending on their shape (6). We performed rigid

1 http://www.agisoft.com
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registration of the reconstructed surface to the surfaces extracted from CT im-
ages using ICP in order to work only in the CT world coordinate system. The
only remaining work was to associate all the markers with each other for the
different configurations (7) in order to allow TRE computation. Indeed, once
this is done, the interpolated positions of each marker can be compared to the
position of their association in reference configuration: the ground-truth. The
association problem was set as a graph matching problem. For each marker,
we searched an association with another marker of the same class (sphere or
clip) and that preserves the neighbourhood: the difference of distances be-
tween the marker and one of its neighbours in the initial configuration and
in the deformed configuration should be minimal. We searched associations
that minimize the sum of all these differences. Nevertheless, this problem is
NP hard. In order to overcome this, we set the problem as a graph matching
problem as proposed in [9]. This is illustrated in Fig. 3. Each node represents
an association. In the example provided, Ai,j represents the association of the
marker i in the reference position and j in the deformed position. Eij−kl repre-
sents the probability or likelihood to accept the next association in the graph
Ak,l by considering the previous association Ai,j as true. We do not consider
nodes representing associations between spheres and clips. We do neither con-
sider arcs that allow to re-associate the same marker. For instance, their is no
arc between A2,2 and A3,2 (because it would associate the marker number 2
twice). We also do not consider arcs which consider an association where the
reference point is not in the neighbourhood of the previous point. We set:

Eij−kl = exp(−λ|dist(Refi, Refk)− dist(Defj , Defl)|) (1)

where Refi and Refj are the centroids of the markers i and j in the reference
position and Defk and Defl are the positions of the markers k and l in deformed
position. Nevertheless, because of the fact that the markers are not densely
present everywhere in the liver and because of strong deformations, the exact
solution of this problem may not coincide with the real markers association
when considering these constraints only. In order to overcome this, we added
extra constraints to this problem by manually fixing some associations (cor-
responding to removing nodes in the graph). We built up an interface which
allows us to refine iteratively the solution provided by the graph matching
optimization, by adding extra constraints by manually clicking the corrected
associations and achieve correct associations. From a marker in the reference
view and the result of the registration for one deformation, one can interpolate
the position of this marker after deformation and compare it to the associated
marker in the ground-truth.

3 Registration Methodology

The deformable registration algorithm presented here is based on previous
work [20,7,3] where the problem is formulated as an iterative energy mini-
mization. As a target for the registration, we consider multi-image registra-
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Fig. 3 Graph formulation of the association problem using 3 markers.

tion: not only one image is used, but a surface of the liver reconstructed from
an exploration video is used as 3D target surface.

3.1 Terms definition and registration approach

In order to properly segment the different lobes of the liver, recall that they
were wrapped in tissues with contrast agent before the reference CT. Do-
ing that, the boundary between the lobes was reinforced in the images and
semi-automatic segmentation was much easier to perform. From this extracted
surface, we used Tetgen2 to generate the tetrahedral mesh from surface trian-
gles. We take as input a bio-mechanical model representing the pre-operative
liver generated using the tetrahedral mesh. We denote the model’s surface ver-
tices as Vs. We use f(p;x) : R3 → R3 to denote the transform of a 3D point
p in the initial configuration to the surface reconstruction coordinates. This
is parametrized by an unknown vector x, and the task is to recover it. From
this exploration video, we use the associated surface reconstruction as the tar-
get of the registration. The vertices of this surface are denoted Q. Without
considering the collisions, the problem to minimize is :

E0(x) = EM (x) + λICPEICP (x;Vs,Q) + λcontE3Dcontours(x,Q), (2)

where λICP ∈ R+, and λcont ∈ R+ are respectively the ICP weight and the
contours weight (in our tests we use λICP = 6.1 and λcont = 100.0) . The
term EM represents the mechanical energy of the system. In our experiments
we use a mass spring model energy but any other model can be used. In our
experiments we model EM (x) using a mass-spring model generated from a
tetrahedral mesh of our reference liver. The term EICP is the deformable ICP
energy, which attracts the model’s transformed surface vertices Vs to fit their
closest vertices in Q. It constrains the model to fit the target surface. In order
to overcome convergence issues associated with point-to-point ICP, we use
point-to-plane ICP instead that allows the surfaces to slide across one another

2 http://wias-berlin.de/software/tetgen
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during registration. E3Dcontours(x,Q) is the contour energy, that helps the
registration by using fixed position constraints. 3D landmarks located on the
contours of the lobes are localized in the model and in the target. In this work,
these are selected manually but it would be possible to automatize this step
in future works. All these terms are explained in [20]. We propose to complete
this energy with a term to prevent self collision, as:

E(x) = E0(x) + λcolEcollision(x). (3)

3.2 Collision model

Collision detection for deformable meshes has received a significant attention
in the literature. As direct intersection checking is computationally expensive,
most works focus on ways to reduce the search space. In our case, even if the
initial registration problem does not have to be solved in real-time, it is still
important to reduce the computation time as much as possible.

A first approach is to perform spatial hashing of the object and to use an
adaptive bounding box [17]. However, as the mesh is not rigid, the structure
of the bounding box has to be recomputed at each step of the registration
algorithm and this is hardly parallelizable. As a consequence, this method
can massively slow down the registration algorithm. Another approach is to
subdivide the space containing the object [22]. The problem is parallelizable
but the issue is to define the boundary and the size of the voxels of the grid.
This solution can be memory-consuming for large meshes.

In our approach, we propose an intermediate parallel solution. First, we
only consider the tetrahedra with at least one face belonging to the surface
of the model. Indeed, if self-collision happens in the volume then there is
necessarily an intersection somewhere on the surface. Removing these collisions
will iteratively remove all the collisions inside the mesh. Once this is done, we
consider a GPU thread per tetrahedron. When a collision test is performed,
all the threads compute the center and the radius of the circumsphere of
their associated tetrahedron. Each thread then tests the intersection between
its associated circumsphere and all the others. This test is a simple distance
comparison and is not computationally expensive. As each thread runs in
parallel, the computation time to take into account is the one of the slowest
thread, so there is no need to reduce the number of comparisons here. If a
possible collision is detected, then a test is performed by the concerning thread,
between the related tetrahedra using [10]. In this method, the search space is
reduced by using the spheres, the structure of the model is fast to update, and
the memory usage is low and constant. We implemented this collision method
on the GPU and tested it with meshes of 68123 tetrahedra on a GeForce GTX
1080. The average time for the collision test is 65 ms.
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3.3 Collision energy formulation

Using collision detection, we defined Ecollision as the self-collision energy term
in the registration energy, which allows the model to recover as soon as a
self-collision is detected on the surface of the mesh. This energy is defined as:

Ecollision(x;Vs, Q) =
∑

collisions

‖xc − (xci + µsharpnessnsurface)‖2, (4)

where xc are the points of the colliding tetrahedron, xci is the position of the
colliding point in the previous step, µsharpness (set as 0.01 in our experiments)
is a weight controlling the rectification step and nsurface is the normal in
xci. Contrary to [20], the collision energy is only a rectification term that
works iteratively. The final solution is an equilibrium where there are small
oscillations around small surface collisions (there is no energy preventing future
collision). A global energy collision term would require computing the relative
distance field to the mesh surface but this is computationally expensive. Our
solution is an alternative where real-time processing is still available.

3.4 Resolution of the minimisation problem

In order to reduce computation time, we use the method in [7] to reduce
the deformable model’s deformation space, exploiting the fact that feasible
deformations tend to be mostly smooth. We optimize E(x) iteratively using
a stiff-to-flexible strategy [8,3], which is important to avoid local minima.
Initially the model is kept rigid, by setting λICP to a small value. We then
optimize E(x) using a single Gauss-Newton iteration, and increase λICP by
a factor. λcont and λcol (set as 100 in our experiments) are kept fixed. We
then repeat the process, truncating λICP to a maximal value, which we set
to 10 times the initial value. We continue until convergence is detected or
a maximum number of iterations is reached. We initialize using a manual
roughly-estimated rigid transform.

4 Experimental Results

We used the dataset presented in section 2 to evaluate the registration algo-
rithm. In order to evaluate the benefit of using segmented lobes and collision
constraints, we tested two configurations for the model using the previously
described dataset. The first set of tests (Fig. 4) was done with a model were
lobes are fused together. This correspond to the human case but this is not
very accurate here because of the sliding between lobes we have for some de-
formations. The second one (Fig. 5) was performed on a model where the lobes
are segmented. In the second set of tests, we tested our registration with (a)
and without (b) collision constraints. For both tests, we did two evaluations.
One where the TRE of all the markers are considered (a and b). This allows
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Fig. 4 Registration errors on the surface (left) and inside the liver (right) when considering
a non segmented lobes model. (b,c,d) are explained in section 4.

Fig. 5 Registration errors on the surface (left) and inside the liver (right) when considering
a model where lobes are segmented. (a,b,c,d) are explained in section 4.

us to evaluate the registration on the whole model and see the effects of lobes
interacting with each other. The other one only considers the markers of the
visible lobe (c and d) where the target surface is properly reconstructed. These
are the results we should look at when evaluating the precision, as in prac-
tice, during a surgery, the surgeon visualizes only the relevant liver lobe. We
performed the evaluation tests using the segmented surface from the CT as a
target (a, b and c) and also the reconstructed surface built from the explo-
ration video (d). The first test evaluates the results we would obtain if our
reconstructed surfaces were perfect. The second test evaluates the registration
in real conditions (noise in the reconstruction, missing parts). This separation
allows us to decouple registration error caused by an incomplete interventional
reconstruction and error caused by the registration algorithm.

Qualitatively, we see in Fig. 6 that after registration, the collision cost
behaves as expected: without it, we see deep collision between lobes but with
it, only small residual collisions remain. The quantitative results are shown in
Fig. 4 and Fig. 5. Results are in general slightly better when using the model
with segmented lobes ('10 mm improvement for the inside and '5mm for the
surface). Concerning the error inside the liver, the collision constraints improve
the quality of the registration ('1-2mm of improvement). This demonstrates
the benefit of such an approach. When considering only the spheres and clips
of the visible lobe, and using the model where collision is taken into account,
the median error is around 20mm inside the liver and 15mm at the surface.
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Fig. 6 Deformed mesh after registration without (left) and with (right) collision constraints.
In red are the collision areas.

5 Conclusion

We have presented a new in vivo porcine liver registration evaluation dataset
that addresses the lack of public datasets in this field, as it will be made public.
TRE can be evaluated on the surface and within the liver. Surface-to-surface
error can also be computed using the segmented CT images, but as a way to
check the behavior and convergence of the algorithms and not as an evaluation
metric. This dataset is the very first of its kind. As an example of use, we have
presented and evaluated a state-of-the-art energy based approach and a novel
extension that handles self-collisions. This can be extended straightforwardly
to handle collisions with other surrounding organs or instruments.

6 Compliance with Ethical Standards

The authors declare that they have no conflict of interest. All applicable inter-
national, national, and institutional guidelines for the care and use of animals
were followed. All procedures performed in studies involving animals were in
accordance with the ethical standards of the institution at which the studies
were conducted.

References

1. Adagolodjo, Y., Trivisonne, R., Haouchine, N., Cotin, S., Courtecuisse, H.: Silhouette-
based pose estimation for deformable organs application to surgical augmented reality.
In: Intelligent Robots and Systems (IROS), pp. 539–544. IEEE (2017)

2. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette,
H., Grisoni, L.: Sofa-an open source framework for medical simulation. In: MMVR
15-Medicine Meets Virtual Reality, vol. 125, pp. 13–18. IOP Press (2007)

3. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface
registration. In: CVPR’07. IEEE Conference on, pp. 1–8. IEEE (2007)

4. Clements, L.W., Chapman, W.C., Dawant, B.M., Galloway Jr, R.L., Miga, M.I.: Robust
surface registration using salient anatomical features for image-guided liver surgery:
Algorithm and validation. Medical physics 35(6Part1), 2528–2540 (2008)

5. Collins, J.A., Weis, J.A., Heiselman, J.S., Clements, L.W., Simpson, A.L., Jarnagin,
W.R., Miga, M.I.: Improving registration robustness for image-guided liver surgery in
a novel human-to-phantom data framework. IEEE transactions on medical imaging
36(7), 1502–1510 (2017)

6. Collins, T., Bartoli, A.: [poster] realtime shape-from-template: System and applications.
In: ISMAR, 2015 IEEE International Symposium on, pp. 116–119. IEEE (2015)



An In vivo Laparoscopic Porcine Liver Registration Dataset 13

7. Collins, T., Bartoli, A., Bourdel, N., Canis, M.: Robust, real-time, dense and deformable
3d organ tracking in laparoscopic videos. In: MICCAI, pp. 404–412. Springer (2016)

8. Collins, T., Chauvet, P., Debize, C., Pizarro, D., Bartoli, A., Canis, M., Bourdel, N.:
A system for augmented reality guided laparoscopic tumour resection with quantitative
ex-vivo user evaluation. In: CARE, pp. 114–126. Springer (2016)

9. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Advances in Neural
Information Processing Systems, pp. 313–320 (2007)

10. Eberly, D.: Intersection of convex objects: The method of separating axes. Geometric
Tools, LLC http://www. geometrictools. com,(1998- 2008) (2001)

11. Fabian, S., Spinczyk, D.: Target registration error minimization for minimally invasive
interventions involving deformable organs. Computerized Medical Imaging and Graphics
65, 4–10 (2018)

12. Fitzpatrick, J.M.: Fiducial registration error and target registration error are uncorre-
lated. In: Medical Imaging 2009: Visualization, Image-Guided Procedures, and Model-
ing, vol. 7261, p. 726102. International Society for Optics and Photonics (2009)

13. Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O., Cotin, S.: Image-
guided simulation of heterogeneous tissue deformation for augmented reality during
hepatic surgery. In: ISMAR, 2013 IEEE International Symposium on. IEEE (2013)

14. Haouchine, N., Roy, F., Untereiner, L., Cotin, S.: Using contours as boundary conditions
for elastic registration during minimally invasive hepatic surgery. In: Intelligent Robots
and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE (2016)

15. Heiselman, J.S., Collins, J.A., Clements, L.W., Weis, J.A., Simpson, A.L., Geevarghese,
S.K., Kingham, T.P., Jarnagin, W.R., Miga, M.I.: Nonrigid registration for laparoscopic
liver surgery using sparse intraoperative data. In: Medical Imaging 2018: Image-Guided
Procedures, Robotic Interventions, and Modeling, vol. 10576, p. 105760D. International
Society for Optics and Photonics (2018)

16. Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.:
Truth cube: Establishing physical standards for soft tissue simulation. Medical Image
Analysis 7(3), 283–291 (2003)

17. Klosowski, J.T., Held, M., Mitchell, J.S., Sowizral, H., Zikan, K.: Efficient collision
detection using bounding volume hierarchies of k-dops. IEEE TVCG pp. 21–36 (1998)
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